Entropic lattice Boltzmann method for microflows
نویسندگان
چکیده
A new method for the computation of flows at the micrometer scale is presented. It is based on the recently introduced minimal entropic kinetic models. Both the thermal and isothermal families of minimal models are presented, and the simplest isothermal entropic lattice Bhatnagar-Gross-Krook (ELBGK) is studied in detail in order to quantify its relevance for microflow simulations. ELBGK is equipped with boundary conditions which are derived from molecular models (diffusive wall). A map of three-dimensional kinetic equations onto two-dimensional models is established which enables two-dimensional simulations of quasi-two-dimensional flows. The ELBGK model is studied extensively in the simulation of the two-dimensional Poiseuille channel flow. Results are compared to known analytical and numerical studies of this flow in the setting of the Bhatnagar-Gross-Krook model. The ELBGK is in quantitative agreement with analytical results in the domain of weak rarefaction (characterized by Knudsen number Kn, the ratio of mean free path to the hydrodynamic scale), up to Kn ∼ 0.01, which is the domain of many practical microflows. Moreover, the results qualitatively agree throughout the entire Knudsen number range, demonstrating Knudsen’s minimum for the mass flow rate at moderate values of Kn, as well as the logarithmic scaling at large Kn. The present results indicate that ELBM can complement or even replace computationally expensive microscopic simulation techniques such as kinetic Monte Carlo and/or molecular dynamics for low Mach and low Knudsen number hydrodynamics pertinent to microflows.
منابع مشابه
Consistent lattice Boltzmann method.
Lack of energy conservation in lattice Boltzmann models leads to unrealistically high values of the bulk viscosity. For this reason, the lattice Boltzmann method remains a computational tool rather than a model of a fluid. A novel lattice Boltzmann model with energy conservation is derived from Boltzmann's kinetic theory. Simulations demonstrate that the new lattice Boltzmann model is the valid...
متن کاملکاربرد و مقایسه روش های بولتزمن شبکه ای مختلف با شبکه بندی غیریکنواخت در شبیه سازی جریان در داخل میکروحفره و میکروکانال
In this study, for the first time, a comparison of single-relaxation-time, multi-relaxation-time and entropic lattice Boltzmann methods on non-uniform meshes is performed and application of these methods for simulation of two-dimensional cavity flows, channel flows and channel flows with sudden expansion is studied in the slip and near transition regimes. In this work, Taylor series expansion a...
متن کاملEntropic Lattice Boltzmann Method for Large Scale Turbulence Simulation
Recently, a minimal kinetic model for fluid flow, known as entropic lattice Boltzmann method, has been proposed for the simulation of isothermal hydrodynamic flows. At variance with previous Lattice Boltzmann methods, the entropic version permits to describe the non-linear dynamics of short scales in a controlled and stable way. In this paper, we provide the first numerical evidence that the en...
متن کاملHigher-order Galilean-invariant lattice Boltzmann model for microflows: single-component gas.
We introduce a scheme which gives rise to additional degree of freedom for the same number of discrete velocities in the context of the lattice Boltzmann model. We show that an off-lattice D3Q27 model exists with correct equilibrium to recover Galilean-invariant form of Navier-Stokes equation (without any cubic error). In the first part of this work, we show that the present model can capture t...
متن کاملEvaluation of two lattice Boltzmann methods for fluid flow simulation in a stirred tank
In the present study, commonly used weakly compressible lattice Boltzmann method and Guo incompressible lattice Boltzmann method have been used to simulate fluid flow in a stirred tank. For this purpose a 3D Parallel code has been developed in the framework of the lattice Boltzmann method. This program has been used for simulation of flow at different geometries such as 2D channel fluid flow an...
متن کامل